
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017                                                                                           30 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

Query Minimization Methods 
S SHANMUGA SRINIVAS, B VENKATRAMANA NAIK,JS ANANDA KUMAR  

 

Abstract— SQL statements can be used to retrieve data from any database. If you've worked with databases for any amount of time 
retrieving information, it's practically given that you've run into slow running queries. Sometimes the reason for the slow response time is 
due to the load on the system, and other times it is because the query is not written to perform as efficiently as possible which is the much 
more common reason. For better performance we need to use best, faster and efficient queries. This paper covers how these SQL queries 
can be optimized for better performance. Query optimization subject is very wide but we will try to cover the most important points. In this 
paper I am not focusing on, in- depth analysis of database but simple query tuning tips & tricks which can be applied to gain immediate 
performance gain. 

Index Terms— Introduction, Procedure, General tips for Query Optimization, Query Processing, Steps for Query Optimization, Conclusion. 

I. INTRODUCTION                                                                     
uery optimization is an important skill for SQL develop-
ers and database administrators (DBAs). In order to im-
prove the performance of SQL queries, developers and 

DBAs need to understand the query optimizer and the tech-
niques it uses to select an access path and prepare a query ex-
ecution plan. Query tuning involves knowledge of techniques 
such as cost-based and heuristic-based optimizers, plus the 
tools an SQL platform provides for explaining a query execu-
tion plan. The best way to tune performance is to try to write 
your queries in a number of different ways and compare their 
reads and execution plans. In this paper I proposed various 
techniques that you can use to try to opti  mize your database 
queries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               Fig 1.Query Optimizer 
 

 

II.PROCEDURE: 

Query optimization is a function of many relational database 
management systems. The query optimizer attempts to deter-
mine the most efficient way to execute a given query by consi-
dering the possible query plans. Generally, the query optimiz-
er cannot be accessed directly by users: once queries are sub-
mitted to database server, and parsed by the parser, they are 
then passed to the query optimizer where optimization occurs. 
However, some database engines allow guiding the query 
optimizer with hints. 

 
 
 
 

———————————————— 
• S Shanmuga Srinivas  is currently pursuing Master of Com-

puter Applications in KMM Institute of PG studies in S.V 
University, Andhra pradesh, PH-9493999689. E-mail: shan-
mugas888@gmail.com 

• B.Venkatramana Naik is currently pursuing Master of Com-
puter Applications  in KMM Institute of PG studies in S.V 
University, Andhra pradesh, PH-9618903651. E-mail: 
venkybukke651@gmail.com. 

• JS Anand Kumar is currently working as Assistant Professor 
in KMM Institute of PG studies in S.V University, Andhra 
pradesh, PH-9441492491. 
 E-mail:jsanandkumar @gmail.com 

Q 

 

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Query_plan
https://en.wikipedia.org/wiki/Hint_(SQL)
mailto:prudhvionteri@gmail.com


International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017                                                                                           31 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
III.GENERAL TIPS FOR QUERY OPTIMIZATION : 
 
Each tip was tested by running both the original query and  
improved query while retrieving information from the Oracle 
11g sample database especially on Sales schema. I recorded 
the average time of each query to show the speed increase of 
using the more efficient query. 

 

 
 

 
 
 
 
 
 
 
 

 
 
 

IV.QUERY PROCESSING IS DONE WITH THE 
FOLLOWING AIM : 

•   Minimization of response time of query (time taken 
to produce the results to user’s query). 

• Maximize system throughput (the number of re-
quests that are processed in a given amount of time). 

• Reduce the amount of memory and storage required 
for processing. 

• Increase parallelism. 

Steps For Query Optimization: 
 

Step 1 - Query Tree Generation 
 
A Query tree is a tree data structure representing a relational 
algebra expression. The tables of the query are represented as 
leaf nodes. The relational algebra operations  are represented 
as the internal nodes. The root represents the query as a 
whole.  
During execution, an internal node is executed whenever its 
operand tables are available. The node is then replaced by the 
result table. This process continues for all internal nodes until 
the root nodes is executed and replaced by the result table. 
 

Step 2 − Query Plan Generation 

After the query tree is generated, a query plan is made. A 
query plan is an extended query tree that includes access 

paths for all operations in the query tree. Access paths speci-
fy how the relational operations in the tree should be per-
formed. For example, a selection operation can have an 
access path that gives details about the use of B+ tree index 
for selection. 

Besides, a query plan also states how the intermediate tables 
should be passed from one operator to the next, how tempo-
rary tables should be used and how operations should be pi-
pelined/combined. 

Step 3− Code Generation 

Code generation is the final step in query optimization. It is 
the executable form of the query, whose form depends upon 
the type of the underlying operating system. Once the query 
code is generated, the Execution Manager runs it and produce 
the results 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SQL Tuning/SQL Optimization Techniques: 

 
Sql Statements are used to retrieve data from the database. We 
can get same results by writing different sql queries. But use of 
the best query is important when performance is considered. 
So you need to sql query tuning based on the requirement.  
 
 

 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017                                                                                           32 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

V.SQL Tuning/SQL Optimization Techniques: 
 
1) The sql query becomes faster if you use the actual columns 
names in SELECT statement instead of than '*'. 
For Example: Write the query as 
 
SELECT id, first_name, last_name, age, subject FROM stu-
dent_details; 
Instead of: 
 
SELECT * FROM student_details; 
 
2) HAVING clause is used to filter the rows after all the rows 
are selected. It is just like a filter. Do not use HAVING clause 
for any other purposes.  
For Example: Write the query as 
 
SELECT subject, count(subject) FROM student_details 
WHERE subject != 'Science' AND subject != 'Maths'  
GROUP BY subject; 
Instead of: 
 
SELECT subject, count(subject)  FROM student_details 
GROUP BY subject HAVING subject!= 'Vancouver' AND sub-
ject!= 'Toronto'; 
 
 3) Sometimes you may have more than one subqueries in 
your main query. Try to minimize the number of subquery 
block in your query.  
    For Example: Write the query as 
 
SELECT name FROM employee WHERE (salary, age ) = (SE-
LECT MAX (salary), MAX (age) FROM employee_details) 
AND dept = 'Electronics';  
Instead of: 
 
SELECT name FROM employeeWHERE salary = (SELECT 
MAX(salary) FROM employee_details) AND age = (SELECT 
MAX(age) FROM employee_details) AND emp_dept = 
'Electronics'; 
 
 4) Use operator EXISTS, IN and table joins appropriately in 
your query.  
a) Usually IN has the slowest performance. b) IN is efficient 
when most of the filter criteria is in the sub-query.  
c) EXISTS is efficient when most of the filter criteria is in the 
main query. 
 
For Example: Write the query as 
 
Select * from product p where EXISTS (select * from or-
der_items o where o.product_id = p.product_id) 
Instead of: 
 
Select * from product p where product_id IN (select prod-
uct_id from order_items); 
 
 
5) Use EXISTS instead of DISTINCT when using joins which 

involves tables having one-to-many relationship.  
For Example: Write the query as 
 
SELECT d.dept_id, d.dept FROM dept d WHERE EXISTS ( 
SELECT 'X' FROM employee e WHERE e.dept = d.dept); 
Instead of: 
 
SELECT DISTINCT d.dept_id, d.dept FROM dept d,employee 
e WHERE e.dept = e.dept; 
 
6) Try to use UNION ALL in place of UNION.  
For Example: Write the query as 
 
SELECT id, first_name UNION ALL SELECT id, first_name 
FROM sports_team; 
Instead of: 
 
SELECT id, first_name, subject FROM student_details_class10 
UNION SELECT id, first_name FROM sports_team; 
 
7) Be careful while using conditions in WHERE clause.  
For Example: Write the query as 
 
SELECT id, first_name, age FROM student_details WHERE 
age > 10; 
Instead of: 
 
SELECT id, first_name, age FROM student_details WHERE 
age != 10; 
 
Write the query as 
 
SELECT id, first_name, age FROM student_details WHERE 
first_name LIKE 'Chan%'; 
Instead of: 
 
SELECT id, first_name, age FROM student_details WHERE 
SUBSTR(first_name,1,3) = 'Cha'; 
 
Write the query as 
 
SELECT id, first_name, age FROM student_details WHERE 
first_name LIKE NVL ( :name, '%'); 
Instead of: 
 
SELECT id, first_name, age FROM student_details WHERE 
first_name = NVL (:name, first_name); 
 
Write the query as 
 
SELECT product_id, product_name FROM product WHERE 
unit_price BETWEEN MAX(unit_price) and MIN(unit_price) 
Instead of: 
 
SELECT product_id, product_name FROM product WHERE 
unit_price >= MAX(unit_price) and unit_price <= 
MIN(unit_price) 
Write the query as 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017                                                                                           33 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

SELECT id, name, salary FROM employee WHERE dept = 
'Electronics' AND location = 'Bangalore'; 
Instead of: 
 
SELECT id, name, salary FROM employee WHERE dept || 
location= 'ElectronicsBangalore'; 
 
Use non-column expression on one side of the query because 
it will be processed earlier. 
 
Write the query as 
 
SELECT id, name, salary FROM employee WHERE salary < 
25000; 
Instead of: 
 
SELECT id, name, salary FROM employee WHERE salary + 
10000 < 35000; 
 
Write the query as 
SELECT id, first_name, age FROM student_details WHERE 
age > 10; 
Instead of: 
 
SELECT id, first_name, age FROM student_details WHERE 
age NOT = 10; 
 
8) Use DECODE to avoid the scanning of same rows or joining 
the same table repetitively. DECODE can also be made used in 
place of GROUP BY or ORDER BY clause.  
For Example: Write the query as 
 
SELECT id FROM employee WHERE name LIKE 'Ramesh%' 
and location = 'Bangalore'; 
Instead of: 
 
SELECT DECODE(location,'Bangalore',id,NULL) id FROM 
employee WHERE name LIKE 'Ramesh%'; 
 
VI.CONCLUSION: 
 
Query optimization is a common task performed by database 
administrators and application designers in order to tune the 
overall performance of the database system. The purpose of 
this paper is to provide SQL scenarios to serve as a quick and 
easy reference guide during the 
development phase and maintenance of the database queries. 
Even if you have a powerful infrastructure, the performance 
can be significantly degraded by inefficient queries. Query 
optimization has a very big impact on the performance of a 
DBMS and it continuously evolves with new, more sophisti-
cated optimization strategies. So, we should try to follow the 
general tips as mentioned above to get a better performance of 
queries. Optimization can be achieved with some efforts if we 
make it a general practice to follow the rules. The main focus 
was on query optimizations.  
 
VII. REFERENCES 
 

  
[1] 10 Ways to Improve SQL Query Performance 
http://www.developer.com/db/10-ways-to-improvesql-query-
performance.html 
 
[2] 15 Ways to Optimize Your SQL Queries 
http://hungred.com/useful information/waysoptimize-sql-
queries/ 
 
[3] Optimize SQL Server queries with these advanced tuning 
techniques. 
http://www.techrepublic.com/blog/theenterprisecloud/optimiz
e-sql-server-queries-with-theseadvanced-tuning-techniques/. 
 
[4] Making Queries Run Faster 
https://sqlschool.modeanalytics.com/advanced/faster-
queries.html. 
 
 
[5] Query Optimization Techniques in Microsoft SQL Ser-
verhttp://www.dbjournal.ro/archive/16/16_4.pdf 
 
[6] SQL Tuning or SQL Optimization. http://beginnersql-
tutorial.com/sqlquery-tuning.htm 
 
[7] SQL Server Optimization 
Tips.http://santhoshgudise.weebly.com/uploads/8/5/4/7/854720 
8/sql_server_optimization_tips-1.doc 
 
[8]Efficient SQL Statements  
https://oraclebase.com/articles/misc/efficient-sql-statements 
 
[9] Best Way to Write SQL Query. 
http://www.ifadey.com/2010/11/best-way-to-writesql-query/ 
 
[10] SQL Tuning Guidelines for Oracle - Simple yet Effective! 
 
 
 

 
 
 

IJSER

http://www.ijser.org/

	I. Introduction



